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Abstract
It is shown that time-independent circular currents and uniformly rotating
charge distributions create heretofore unreported constant electric and magnetic
fields associated with radial acceleration of the charges forming the circular
currents and with radial acceleration of the charges comprising the rotating
charge distributions. These fields are computed for several types of rotating
charge distributions and for several types of circular currents. One of the
consequences of the existence of these fields is that the Aharonov–Bohm effect
can now be explained on the basis of classical electrodynamics.

PACS numbers: 41.20.-q, 03.50.De

1. Introduction

It is well known that the electric field of an electric charge in the state of uniform translational
motion is different from the electric field of the same charge at rest. Therefore it is reasonable
to expect that the electric field of a charge in the state of uniform rotational motion should
also be different from the electric field of the same stationary charge. The theoretical analysis
presented in this paper shows that uniformly rotating charge distributions do indeed produce
constant electric fields different from those of the same stationary charge distributions. This
analysis is based on the ‘causal’ solutions of Maxwell’s equations representing the electric
field E and the magnetic flux density field B in a vacuum in terms of their causative sources—
electric charges (charge density ρ) and electric currents (current density J) [1–6, 7 pp 514–6]:

E = 1

4πε0

∫ {
[ρ]

r3
+

1

r2c

[
∂ρ

∂t

]}
r dV − 1

4πε0c2

∫
1

r

[
∂J

∂t

]
dV (1)
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Figure 1. A ring carrying a uniformly distributed electric charge of density ρ rotates with constant
linear velocity u about its symmetry axis (y axis). The point of observation P(x, y) is in the xy
plane.

and

B = µ0

4π

∫
[J]

r3
× r dV +

µ0

4πc

∫
1

r2

[
∂J

∂t

]
× r dV. (2)

In these integrals the brackets are the ‘retardation symbol’, indicating that the quantities
between the brackets are to be evaluated for the ‘retarded’ time t ′ = t − r/c, where t is
the time for which E and B are computed, r is the distance from the source point (volume
element dV ) to the field point (the point for which E and B are computed), c is the velocity of
light, ε0 is the permittivity of space and µ0 is the permeability of space. Equations (1) and (2)
are of a relatively recent origin and provide a new means for analysing and discussing electric
and magnetic phenomena.

Particularly significant for the calculations that follow is the last integral in equation (1).
It represents the so-called ‘electrokinetic field’ Ek [8], so named because it arises from the
motion of electric charges constituting the current density J . Although this integral makes
an important contribution to the electric field of uniformly moving charges [9, 10], its main
function is to represent the effect of charge acceleration on the electric field of the charge
(or current) under consideration. In the calculations that follow, we shall use this integral for
determining the electric field of electric charge distributions in the state of circular and rotational
motion. This type of motion is only possible if the individual charges comprising the charge
distribution under consideration experience a radial acceleration. Therefore, even when the
speed of the charges is constant, the derivative ∂J/∂t does not vanish, and an electrokinetic
field Ek is inevitably created.

The derivative ∂J/∂t appearing in equation (2) indicates that the acceleration-related
electrokinetic fields of rotating charges and circular currents are accompanied by acceleration-
related magnetic fields. These fields will also be considered in this paper.
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2. Theory I. Electric field

Consider a charged ring of radius b and cross-sectional area S carrying a uniformly distributed
charge of density ρ and rotating about its symmetry axis (y axis) with constant linear velocity u
(figure 1). Let us find the electric field produced by this ring at a point P(x, y) at a distance
R from the centre of the ring.

According to equation (1), there are two different contributions to the field at P . The first
contribution comes from the first integral in equation (1). Since the charge density ρ of the
ring does not depend on time, the derivative ∂ρ/∂t vanishes. Furthermore, since the charge
density is the same at all times at all points of the ring, the retardation may be assumed to have
no effect, so that the first integral in equation (1) represents the ordinary Coulomb field of the
ring:

EC = 1

4πε0

∫
ρ

r3
r dV. (3)

The second contribution to the electric field is from the last integral in equation (1), which
represents the electrokinetic field Ek. Also in this integral the retardation may be assumed to
have no effect because at any given point of the ring the derivative ∂J/∂t is the same at all
times, so that ∂J/∂t at t ′ = t − r/c is the same as ∂J/∂t at t . Thus the electrokinetic field
created by the ring is

Ek = − 1

4πε0c2

∫
1

r

∂J

∂t
dV. (4)

Only Ek depends on the acceleration of the charges, and therefore in the calculations that
follow we shall be primarily interested in Ek.

Writing the three position vectors shown in figure 1 as

R = xi + yj (5)

b = −b cosϕi − b sin ϕk (6)

and

r = b + R (7)

we have

r = −b cosϕi − b sin ϕk + xi + yj

= (x − b cosϕ)i − b sin ϕk + yj (8)

where i, j and k are unit vectors in the direction of the x, y and z axis, respectively. The
magnitude of r is

r = (r · r)1/2 = [(x − b cosϕ)2 + b2 sin2 ϕ + y2]1/2

= (x2 − 2bx cosϕ + b2 + y2)1/2. (9)

The derivative ∂J/∂t for the shaded element of the ring shown in figure 1 is
∂J

∂t
= ∂ρu

∂t
= ρ

∂u

∂t
= ρa (10)

where a is the radial (centripetal) acceleration of the element1. Since

a = u2

b2
b = u2

b2
(−b cosϕi − b sin ϕk) (11)

1 The reason that, for the charge element under consideration, ∂u/∂t = a is as follows. The partial derivative ∂u/∂t
is the rate of change of u at a fixed point of the trajectory of the charge element. At the moment when the charge
element arrives at a particular point of its trajectory, its velocity vector is in one direction. When, after a time interval
�t , the charge element leaves this point, the velocity vector is in a slightly different direction. The change in the
velocity vector is �u. The partial derivative is the limit of the ratio �u/�t for �t → 0 (very short charge element).
The acceleration a is the limit of the same ratio.
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we have

∂J

∂t
= −ρ

u2

b
(cosϕi + sin ϕk). (12)

Substituting equations (9) and (12) into (4), we find the contribution of the shaded element
shown in figure 1 to the electrokinetic field Ek observed at the point P(x, y):

dEk = ρu2(cosϕi + sin ϕk)

4πε0c2b(x2 − 2bx cosϕ + b2 + y2)1/2
dV (13)

where dV is the volume of the shaded element. The electrokinetic field produced by the entire
ring is therefore

Ek = ρu2

4πε0bc2

∫
(cosϕi + sin ϕk)

(x2 − 2bx cosϕ + b2 + y2)1/2
dV (14)

where the integration is over the volume of the ring. Expressing dV as dV = Sb dϕ, we have

Ek = ρu2S

4πε0c2

∫ 2π

0

(cosϕi + sin ϕk)

(x2 − 2bx cosϕ + b2 + y2)1/2
dϕ. (15)

By the symmetry of the system, the z component of Ek vanishes, so that we are left with

Ek = i
ρu2S

4πε0c2

∫ 2π

0

cosϕ

(x2 − 2bx cosϕ + b2 + y2)1/2
dϕ. (16)

A closed form solution of the integral in equation (16) does not exist. Therefore we shall
apply equation (16) to several special cases for which an approximate solution of equation (16)
can be obtained.

2.1. A small rotating ring

The first special case that we shall consider is a ring as in figure 1 except that its radius is much
smaller than the distance between the ring and the point of observation, b � R. In this case
we can write

1/(x2 − 2bx cosϕ + b2 + y2)1/2 ≈ 1/{(x2 + y2)1/2[1 − 2bx cosϕ/(x2 + y2)]1/2}
= 1/[R(1 − 2bx cosϕ/R2)1/2] ≈ 1 + bx cosϕ/R2

R
(17)

which, by equation (16), gives

Ek ≈ i
ρu2S

4πε0c2R

∫ 2π

0
cosϕ

(
1 +

bx cosϕ

R2

)
dϕ (18)

and, after integration,

Ek ≈ i
ρu2bxS

4ε0R3c2
= i

ρu2bS sin θ

4ε0R2c2
(19)

or, in terms of spherical coordinates R and θ ,

Ek ≈ ρu2bS

4ε0R2c2
(sin θRu + sin θ cos θΘu) (20)

where Ru and Θu are unit vectors in the directions of R and θ , respectively.
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Using the same approximation as in equation (17), we have for r/r3 in equation (3)

r

r3
≈ 1 + 3bx cosϕ/R2

R3
R (21)

which gives for the Coulomb field of the ring

EC ≈ ρbS

2ε0R3
R = ρbS

2ε0R2
Ru. (22)

The total electric field of the ring observed in the xy plane is obtained by adding
equations (20) and (22):

E ≈ ρbS

2ε0R2

(
1 +

u2

2c2
sin2 θ

)
Ru +

ρbSu2

8ε0R2c2
sin(2θ)Θu. (23)

Expressing E in terms of the charge of the ring, q = 2πbSρ, we have

E ≈ q

4πε0R2

(
1 +

u2

2c2
sin2 θ

)
Ru +

qu2

16πε0R2c2
sin(2θ)Θu. (24)

2.2. A small rotating disc

Expressing in equation (20) the linear velocity u in terms of the angular velocity ω, replacing
b by x ′ and S by τ dx ′, and considering the ring to be a differential element of a disc, we can
write

dEk ≈ ρω2x ′3

4ε0R2c2
(sin2 θRu + sin θ cos θΘu)τ dx ′ (25)

where τ is the thickness of the disc (the same as that of the ring). Integrating equation (25)
between 0 and b, we then obtain for the electrokinetic field of a disc of radius b � R

Ek ≈ ρω2b4τ

16ε0R2c2
(sin2 θRu + sin θ cos θΘu). (26)

For the Coulomb field we similarly obtain

EC ≈ ρb2τ

4ε0R2
Ru. (27)

Adding equations (26) and (27), we obtain for the total electric field of the rotating disc

E ≈ ρb2τ

4ε0R2

(
1 +

ω2b2

4c2
sin2 θ

)
Ru +

ρω2b4τ

32ε0R2c2
sin(2θ)Θu. (28)

Expressing E in terms of the charge of the disc, q = πb2τρ, we have

E ≈ q

4πε0R2

(
1 +

ω2b2

4c2
sin2 θ

)
Ru +

qω2b2

32πε0R2c2
sin(2θ)Θu

= q

4πε0R2

(
1 +

u2

4c2
sin2 θ

)
Ru +

qu2

32πε0R2c2
sin(2θ)Θu (29)

where u is the linear velocity of the rim of the disc.
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2.3. A small rotating sphere

Replacing in equation (26) b4 by (b2 − y ′2)2 and τ by dy ′, and assuming that the disc whose
electrokinetic field is represented by equation (26) is a differential element of a sphere, we find
by integrating over y ′ from −b to b that the electrokinetic field of a rotating sphere of radius
b � R is

Ek ≈ ρω2b5

15ε0R2c2
(sin2 θRu + sin θ cos θΘu). (30)

For the Coulomb field we have

EC = ρb3

3ε0R2
Ru. (31)

Adding equations (30) and (31), we obtain for the total electric field of the rotating sphere

E ≈ ρb3

3ε0R2

(
1 +

ω2b2

5c2
sin2 θ

)
Ru +

ρω2b5

30ε0R2c2
sin(2θ)Θu. (32)

Expressing E in terms of the charge of the sphere, q = 4πb3ρ/3, we have

E ≈ q

4πε0R2

(
1 +

ω2b2

5c2
sin2 θ

)
Ru +

qω2b2

40πε0R2c2
sin(2θ)Θu

= q

4πε0R2

(
1 +

u2

5c2
sin2 θ

)
Ru +

qu2

40πε0R2c2
sin(2θ)Θu (33)

where u is the equatorial linear velocity of the sphere.

2.4. A long rotating hollow cylinder

Consider a long hollow cylinder of radius b rotating about its symmetry axis. Let the cylinder
carry a uniformly distributed charge of density ρ and let the length of the cylinder be 2L.
The electrokinetic field outside the cylinder can be obtained by assuming that the ring whose
electrokinetic field is represented by equation (16) is a differential element of the cylinder. Let
the thickness of the cylinder wall be w � b. The electrokinetic field of the cylinder can then
be found by replacing in equation (16) S by w dy ′, y by y ′, and by integrating the resulting
equation over the length of the cylinder.

Let us assume that the point of observation is in the middle plane of the cylinder and that
L 
 x (‘long’ cylinder). We then have

Ek = i
ρu2w

4πε0c2

∫ 2π

0

∫ L

−L

cosϕ

(x2 − 2bx cosϕ + b2 + y ′2)1/2
dϕ dy ′. (34)

Integrating by parts over ϕ, we have

Ek = i
ρu2wxb

4πε0c2

∫ 2π

0

∫ L

−L

sin2 ϕ

(x2 − 2bx cosϕ + b2 + y ′2)3/2
dϕ dy ′. (35)

Integrating over y ′ and taking into account that L 
 x, we obtain

Ek = i
ρu2wxb

2πε0c2

∫ 2π

0

sin2 ϕ

(x2 − 2bx cosϕ + b2)
dϕ. (36)
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The integral in equation (36) is just π/x2. The electrokinetic field of the cylinder is therefore

Ek = ρu2wb

2ε0xc2
i. (37)

For the Coulomb field we have (see, for example, [7, pp 89–90])

EC = ρwb

ε0x
i. (38)

Adding equations (37) and (38) and using cylindrical coordinates, we obtain

E = ρwb

ε0r
2
0

(
1 +

u2

2c2

)
r0 (39)

where r0 is a radius vector normal to the axis of the cylinder and directed from the axis to
the point of observation; r0 (the magnitude of r0) is the distance from the axis to the point of
observation. Expressing E in terms of the charge of the cylinder, q = 4πbwLρ, we have

E = q

4πε0Lr
2
0

(
1 +

u2

2c2

)
r0 = q

4πε0Lr
2
0

(
1 +

ω2b2

2c2

)
r0 (40)

where ω is the angular velocity of the cylinder.

2.5. A long rotating solid cylinder

Expressing in equation (37) the linear velocity u in terms of the angular velocity ω, replacing
b by x ′ and w by dx ′, and considering the hollow cylinder to be a differential element of the
solid cylinder, we can write

dEk = i
ρω2x ′3

2ε0xc2
dx ′. (41)

Integrating equation (41) between 0 and b, we obtain for the electrokinetic field of a solid
rotating cylinder of radius b

Ek = ρω2b4

8ε0xc2
i. (42)

For the Coulomb field we have [7, pp 89–90]

EC = ρb2

2ε0x
i. (43)

Adding equations (42) and (43) and using cylindrical coordinates we obtain

E = ρb2

2ε0r
2
0

(
1 +

ω2b2

4c2

)
r0. (44)

Expressing E in terms of the charge of the cylinder, q = 2πb2Lρ, we have

E = q

4πε0Lr
2
0

(
1 +

ω2b2

4c2

)
r0 = q

4πε0Lr
2
0

(
1 +

u2

4c2

)
r0 (45)

where u is the linear velocity at the surface of the cylinder.
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2.6. A long solenoid

Consider a long solenoid whose symmetry axis is the y axis. Let the length of the solenoid be
2L and let it carry a current I . The electrokinetic field outside the solenoid can be obtained from
equation (37) for the long thin rotating cylinder. Let the thickness of the current-carrying wall
of the solenoid bew, let the current in each turn of the solenoid be I and let the solenoid have n
turns. The charge density ρ associated with the current in the solenoid is then ρ = nI/2Luw.
Expressing Ek in terms of I , we then obtain

Ek = nIub

4ε0Lxc2
i = nIub

4ε0Lr
2
0 c

2
r0 (46)

where r0 is a radius vector normal to the axis of the solenoid and directed from the axis to
the point of observation; r0 (the magnitude of r0) is the distance from the axis of the solenoid
to the point of observation. Since ordinarily only negative charges produce the current in the
solenoid, whereas an equal number of positive charges are at rest in the solenoid, the positive
charges make no contribution to the electrokinetic field of the solenoid, and the Coulomb fields
of the positive and negative charges of the solenoid cancel each other.

3. Theory II. Magnetic field

Let us designate the magnetic flux density field associated with the second integral in
equation (2) as Bk and, by analogy with the electrokinetic field Ek, let us call it the
‘magnetokinetic field’. We thus have

Bk = µ0

4πc

∫
1

r2

[
∂J

∂t

]
× r dV. (47)

To determine the magnetokinetic field produced by the rotating ring shown in figure 1, we
proceed as follows. Since at any point of the ring the derivative ∂J/∂t is the same at all times,
the retardation may be assumed to have no effect and we can write equation (47) as

Bk = µ0

4πc

∫
1

r2

∂J

∂t
× r dV. (48)

Just as for the electrokinetic field Ek, r is given by equation (8) and the derivative ∂J/∂t for
the shaded element in figure 1 is given by equations (10)–(12), so that dBk associated with the
shaded element is

dBk = µ0ρu
2b × r

4πcb2(x2 − 2bx cosϕ + b2 + y2)
dV (49)

and, since by equation (7) r = b + R, we obtain

dBk = µ0ρu
2b × R

4πcb2(x2 − 2bx cosϕ + b2 + y2)
dV (50)

which, with equation (6), yields

dBk = − µ0ρu
2(cosϕi + sin ϕk) × R

4πcb(x2 − 2bx cosϕ + b2 + y2)
dV. (51)

The magnetokinetic field produced by the ring is therefore

Bk = µ0ρu
2

4πcb
R ×

∫
cosϕi + sin ϕk

(x2 − 2bx cosϕ + b2 + y2)
dV (52)
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where we have factored out the constant vector R. Writing dV as Sb dϕ, we have

Bk = µ0ρu
2S

4πc
R ×

∫ 2π

0

cosϕi + sin ϕk

(x2 − 2bx cosϕ + b2 + y2)
dϕ. (53)

By symmetry, the contribution of the z component of the integrand is zero, so that we are left
with

Bk = R × i
µ0ρu

2S

4πc

∫ 2π

0

cosϕ

(x2 − 2bx cosϕ + b2 + y2)
dϕ (54)

and, since R × i = −R cos θk = −yk, we obtain

Bk = −k
µ0ρu

2yS

4πc

∫ 2π

0

cosϕ

(x2 − 2bx cosϕ + b2 + y2)
dϕ. (55)

Let us now apply equation (55) to the special cases considered in section 2.

3.1. A small rotating ring

Assuming that b � R (‘small ring’), we have, as in equation (17),

1/(x2 − 2bx cosϕ + b2 + y2) ≈ 1 + 2bx cosϕ/R2

R2
. (56)

Substituting equation (56) into (55), we obtain

Bk ≈ −k
µ0ρu

2yS

4πc

∫ 2π

0

cosϕ(1 + 2bx cosϕ/R2)

R2
dϕ

= −k
µ0ρu

2byxS

2cR4
(57)

or

Bk ≈ −µ0ρu
2bS sin(2θ)

4cR2
k. (58)

In spherical coordinates, Bk is

Bk ≈ −µ0ρu
2bS sin(2θ)

4cR2
Φu (59)

where Φu is the azimuthal unit vector left-handed relative to the y axis. Written in terms of
the current I = ρuS created by the rotating ring, Bk is

Bk ≈ −µ0Iub sin(2θ)

4cR2
Φu. (60)

The total magnetic field produced by the ring is the sum of Bk and the field associated
with the first integral in equation (2). However, the latter field (which is the ordinary dipole
field of the ring) is of no interest for the present discussion and we shall not include it in our
derivations.

3.2. A small rotating disc

Expressing in equation (59) the linear velocity u in terms of the angular velocity ω, replacing
b by x ′ and S by τ dx ′, and considering the ring to be a differential element of a disc, we can
write

dBk ≈ −Φu

µ0ρω
2x ′3τ sin(2θ)

4cR2
dx ′. (61)
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Integrating equation (61) between 0 and b, we then obtain for the magnetokinetic field of a
disc of radius b � R

Bk ≈ −µ0ρω
2b4τ

16cR2
sin(2θ)Φu = −µ0ρu

2b2τ

16cR2
sin(2θ)Φu (62)

where u is the linear velocity of the rim of the disc. Expressing Bk in terms of the charge of
the disc, q = πb2τρ, we obtain

Bk ≈ −µ0qω
2b2

16πcR2
sin(2θ)Φu = − µ0qu

2

16πcR2
sin(2θ)Φu. (63)

3.3. A small rotating sphere

Using equation (62) with angular velocity ω, replacing b4 by (b2 − y ′2)2 and τ by dy ′, and
assuming that the disc represented by equation (62) is a differential element of a sphere, we
find by integrating from −b to b that the magnetokinetic field of the rotating sphere of radius
b � R is

Bk ≈ −µ0ρω
2b5 sin(2θ)

15cR2
Φu = −µ0ρu

2b3 sin(2θ)

15cR2
Φu (64)

where u is the equatorial linear velocity of the sphere. Expressing Bk in terms of the charge
of the sphere, q = 4πb3ρ/3, we obtain

Bk ≈ −µ0qω
2b2 sin(2θ)

20πcR2
Φu = −µ0qu

2 sin(2θ)

20πcR2
Φu. (65)

3.4. Long rotating cylinders and a long solenoid

Consider a long thin rotating cylinder whose symmetry axis is the y axis. Let the length of
the cylinder be 2L, let the thickness of its wall be w, and let it carry a uniformly distributed
charge of density ρ. The magnetokinetic field outside the cylinder can be obtained with the
help of equation (55) by assuming that the ring, whose electrokinetic field is represented by
equation (55), is a differential element of the cylinder. Let the point of observation be in the
middle plane of the cylinder and let L 
 x (‘long’ cylinder). Replacing y in equation (55)
by y ′, and replacing S by w dy ′, we then have

Bk = −k

∫ L

−L

µ0ρu
2wy ′

4πc

∫ 2π

0

cosϕ

(x2 − 2bx cosϕ + b2 + y ′2)
dϕ dy ′

= −k
µ0ρu

2w

4πc

∫ L

−L

∫ 2π

0

y ′ cosϕ

(x2 − 2bx cosϕ + b2 + y ′2)
dϕ dy ′. (66)

However, the contributions of −y ′ and y ′ cancel when we integrate from −L to L. Thus the
integral in equation (66) is zero and the cylinder does not create a magnetokinetic field in the
midplane of the cylinder. The same considerations apply to a solid rotating cylinder and to a
current-carrying solenoid.

4. Discussion

The calculations of the electrokinetic and magnetokinetic fields Ek and Bk presented above
reveal the existence of several previously unreported and unforeseen electromagnetic effects,
the most important of which are:

(1) A steady-state circular electric current creates a constant radial electric field associated
with radial acceleration of the charges constituting the current.
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(2) A uniformly rotating spherical charge creates not only the usual Coulomb field, but
also a constant radial electric field associated with radial acceleration of the elementary charges
within the spherical charge under consideration.

(3) A steady-state circular electric current creates not only the usual magnetic field
associated with the current, but also a constant circular magnetic field associated with radial
acceleration of the charges constituting the current.

(4) A uniformly rotating spherical charge creates not only the usual magnetic dipole field,
but also a constant circular magnetic field associated with radial acceleration of the elementary
charges within the spherical charge under consideration.

In connection with these effects two questions arise:
(1) Why were these effects not predicted by electromagnetic theory in the past?
(2) Are there any experiments manifesting these effects?
The answer to the first question is quite simple. Crucial for the calculations presented

in this paper are equations (1) and (2). Although these equations were derived almost half a
century ago, they became generally known relatively recently and have not yet been used for
practical applications to any appreciable extent.

The answer to the second question is more complicated. First, it should be noted that,
because of the factor u2/c2 in the electrokinetic field equations and the factor u2/c in the
magnetokinetic field equations, these fields are extremely weak, except when u is close to
c, which can hardly happen in macroscopic systems. Furthermore, in order to detect these
very weak fields in macroscopic experiments one needs to use field-detecting devices whose
sensitivity is much greater than that of conventional macroscopic electromagnetic instruments.

The situation is quite different in mesoscopic and microscopic systems. High velocities
are commonplace in such systems, and electric and magnetic fields are detected there by
elementary particles whose motion is strongly affected even by extremely weak fields. In fact,
there is good evidence that the electrokinetic field associated with a circular current has already
been observed in a mesoscopic experiment, in the well known Aharonov–Bohm experiment.

In their now famous 1959 paper, Aharonov and Bohm advanced the theory that the
magnetic vector potential is not just a mathematical device, but an observable physical quantity
having a physical significance of its own [11]. They suggested that the wavefunction of
electrons moving outside a long current-carrying solenoid in a region where (as was generally
assumed) there are no electric or magnetic fields can be altered solely by the magnetic vector
potential. Experiments have apparently supported their theory [12], and the phenomenon
predicted by them became known as the Aharonov–Bohm effect.

Although the Aharonov–Bohm effect is considered to be a quantum mechanical effect
(it manifests itself as a shift of wavefunction interference fringes), it could have profound
and dramatic consequences for classical electrodynamics. In classical electrodynamics, only
electric and magnetic fields can alter the motion of charged particles. They do so by exerting
electric and magnetic forces on the particles. If electromagnetic potentials can exert a
dynamical effect on charged particles in the absence of electric or magnetic fields at the location
of the particles, then the entire Maxwellian electrodynamics is incorrect and must be replaced
by a different theory. However, no physical theory has been validated more convincingly and
more completely than Maxwellian electrodynamics.

It should be noted that the expressions for the fringe shift obtained by Aharonov and
Bohm involve purely classical electrodynamic quantities: the macroscopic magnetic vector
potential of the solenoid and the macroscopic magnetic flux inside the solenoid in particular.
The question arises therefore: is it possible that the fringe shift observed in the Aharonov–
Bohm experiment is actually associated with an electric or magnetic field outside the solenoid
that somehow was overlooked in the formulation of the theory of the effect? Numerous
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attempts have been made to interpret this fringe shift in terms of classical electrodynamics [13],
and the role of the magnetic vector potential in the Aharonov–Bohm experiment has been
questioned [14]. Quite clearly, a successful electrodynamic theory of the Aharonov–Bohm
experiment should accomplish two things: it should show that an electric or magnetic field
does indeed exist outside the solenoid in the Aharonov–Bohm experiment and it should explain
the role of the macroscopic magnetic vector potential in that experiment. Until now such a
theory could not be formulated.

The theory of acceleration-related electrokinetic fields presented in this paper finally
makes it possible to reconcile the Aharonov–Bohm experiment with classical electrodynamics.
According to equation (46), there is indeed an electric (electrokinetic) field outside a current-
carrying solenoid:

Ek = nIub

4ε0Lr
2
0 c

2
r0. (46)

Therefore, according to this equation, the electrons in the Aharonov–Bohm experiment are
moving in the presence of an electric field and, consequently, experience an electric force due
to this field. The question remains, however, how this electric force is related to the magnetic
vector potential of the solenoid. The answer to this question is provided below.

As with any electric field, the electrokinetic field exerts a force

F = qEk (67)

on the electric charge q located in this field. If the charge q moves through Ek, it acquires a
momentum p given by

p =
∫

F dt =
∫

qEk dt. (68)

Substituting Ek from equation (4) and integrating over time, we have

p = − q

4πε0c2

∫ ∫
1

r

∂J

∂t
dV dt = − q

4πε0c2

∫
J

r
dV. (69)

However, the last integral in equation (69) is

1

4πε0c2

∫
J

r
dV = A (70)

where A is the vector potential produced at any point of space by the current J (see, for
example, [7, pp 363–4] noting that 1/ε0c

2 = µ0), the current which, according to equation (2),
also produces the magnetic field B in the solenoid. Thus, for an electron in the Aharonov–
Bohm experiment, equation (69) can be written as

p = eA (71)

where A is the vector potential at the point where the electron (negative charge e) is located.
When the electron moves from its source to the screen on which the interference fringes

are observed, the phase of its wavefunction changes by [15]

δ =
∫

p

h̄
· dl = e

h̄

∫
A · dl. (72)

The difference in the phases of the wavefunction of electrons passing the solenoid on two
different sides S1 and S2 is then

δ1 − δ2 = e

h̄

( ∫
S1

A · dl −
∫
S2

A · dl

)
= e

h̄

∮
A · dl. (73)
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Since ∮
A · dl = $ (74)

where $ is the magnetic flux enclosed by the path of integration (see, for example, [7, p 366])
(the magnetic flux inside the solenoid), we finally obtain

δ1 − δ2 = e

h̄
$. (75)

This is the same equation as that obtained by Aharonov and Bohm on the basis of their theory.
Thus, equation (75), which is the mathematical expression for phase shift in the Aharonov–

Bohm experiment, is a consequence of an electric force acting on moving electrons. The force
is caused by the electric field produced by the same current which creates the magnetic field
in the solenoid. This force is a strictly classical phenomenon and is a direct consequence
of Maxwell’s electrodynamic equations. Therefore, although Aharonov and Bohm attributed
the phase shift observed in their experiment to the magnetic vector potential, the experiment
does not reveal any special physical significance of the magnetic vector potential2. In this
connection it may be mentioned that electromagnetic forces can be quite generally described
and computed not only in terms of electromagnetic fields but also in terms of electromagnetic
potentials [17].

In conclusion it should be noted that the study of the electrokinetic and magnetokinetic
fields represented by the second integral of equation (1) and by the second integral of
equation (2) is still in its rudimentary stage. More studies, especially experimental, are needed
for elucidating properties, peculiarities and possible uses of these fields. The calculations
presented in this paper indicate that these fields may give rise to a variety of important
electromagnetic effects not yet described or observed.
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